Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Frontiers in Built Environment ; 8:24, 2022.
Artigo em Inglês | Web of Science | ID: covidwho-1979031

RESUMO

On 30 October 2020, an earthquake of M-w 6.9 hit the Aegean coasts of Turkey and Greece. The epicentre was some 14 km northeast of Avlakia on Samos Island, and 25 km southwest of Seferihisar, Turkey, triggering also a tsunami. The event has been followed by >4,000 aftershocks up to M-w 5.2 The Earthquake Engineering Field Investigation Team (EEFIT) has immediately gathered a team to conduct a hybrid reconnaissance study, bringing together remote and field investigation techniques. The mission took place between 16 November and 17 December, inclusive of three sets of field study carried out by the field crews for building damage assessment in the affected areas in Turkey and Greece under the coordination of the remote team. The mission also aimed to assess the viability of alternative data sources for an appraisal of the future viability of hybrid missions. This paper summarises the mission setup and findings, and discusses the benefits of and difficulties encountered during this hybrid reconnaissance activity.

2.
Frontiers in Built Environment ; 8:16, 2022.
Artigo em Inglês | Web of Science | ID: covidwho-1869345

RESUMO

On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards;to understand the observed strong ground motions and compare these to existing seismic codes;to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA